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Bone is a living tissue undergoing perpetual remodeling. Bone cells are daily created while
other cells disappear. Two antagonistic pathways interact with each other (Wnt pathway or
wingless-related integration site and RANK/RANKL/OPG pathway or receptor activator of nuclear
factor-kappa B/receptor activator of nuclear factor-kappa B ligand/osteoprotegerin) and ensure
balance between bone formation and bone resorption in young adults (Mitchell and Streeten,
2013). These two pathways regulate the activity of osteoblasts (responsible for the formation of
bone tissue) and osteoclasts (responsible for the resorption of bone tissue).

With advancing age, the activity of osteoclasts progressively overtakes that of osteoblasts so that
the bone mineral density (BMD) continually decreases, which is inevitable even in healthy subjects
(Paillard, 2014). As the number and activity of osteoblasts decreases, some individual trabeculae
disappear or undergo perforations (Marie and Kassem, 2011). This causes, on the one hand, a
reduction of the space necessary for the formation of new bone cells, and on the other hand, a
disorganization of the trabecular network. The cortical bone also undergoes an alteration which
is mainly provoked by increased porosity from both an increase in resorption cavities and an
accumulation of incompletely closed osteons (Chen et al., 2013). Thus, aging is characterized by
a reduction in mass and a change in the architecture of bone tissue. These histological changes in
bone are defined by the term osteopenia and are also related to a slowing of the speed of the bone
remodeling process. If the reduction of the value of BMD is greater than 2.5 standard deviations
in comparison with normal values in young adults, the term of osteopenia is substituted by that
of osteoporosis (Paillard, 2014). In this context, the mechanical resistance of bone is jeopardized.
Since the risk of falling due to the alteration of the postural function also increases with age, the risk
of fracture increases logically with age (Nitz et al., 2013).

In order to boost the osteoblast activity and to reduce the osteopenia in healthy aged subjects,
bone should undergo mechanical deformations from any kind of external force (e.g., shock,
pressure, mechanical stress). To this end, regular physical exercise is a physiological method (with
appropriate diet) that can mitigate the effects of normal (non-pathological) bone demineralization,
especially in healthy older subjects (Alghadir et al., 2016; Watson et al., 2018). Indeed, physical
exercise induces mechanical constraints (i.e., mechanical stress) generating bone deformation
which stimulates osteogenesis and favors bone remodeling (Srinivasan et al., 2012).

However, very old people (even healthy ones) are often either unable or unwilling to
perform conventional exercise programs (Paillard, 2018). Evidence suggests that the lower
the physical activity volume, the lower the bone mineral density. Hence, a vicious circle
is set up and the osteopenia process is amplified because of the lack of physical activity
and mechanical constraints applied on bone. In this context, only an artificial technique not
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requiring any effort to generate (passive) repetitive muscle
contractions likely to exert mechanical stimuli on bone could
break this vicious circle. Regular neuromuscular electrical
stimulation (NMES) may be a feasible alternative intervention
to enhance BMD. Nevertheless, physical exercise achieved in
condition of body discharge i.e., the body is not in contact with
the ground (e.g., swimming, cycling) or in a static condition i.e.,
without any dynamic and/or ample movement (e.g., stretching,
balance) does not stimulate (or very weakly) osteogenesis
(Paillard, 2014). This author specifies that the osteogenic function
of aerobic training (e.g., walking, running) is effective only if
the intensity of exercise is high (i.e., generating strong impacts
on the ground) and that of strength training is effective only if
the completed muscular contractions are dynamic and carried
out with heavy loads. On the basis of findings mentioned above,
NMES is unlikely to have an ostegenic function since it is
practiced in a static condition (often seated on a chair i.e., in
condition body discharge) and does not engender any evident
mechanical stress on bone.

However, although the osteogenic effects of NMES remain
uncertain, the question still deserves to be raised since the
regular/chronic application of NMES has numerous advantages
related to the muscle function and thus in the fight against
sarcopenia (Paillard et al., 2004; Kern et al., 2014; Barberi
et al., 2015; Paillard, 2018). On the one hand, NMES can be
clinically and preventively substituted for voluntary exercise in
older subjects to stimulate their muscle function (Von Stengel
et al., 2015). On the other hand, therapists consider that the
anti-osteoporosis and anti-sarcopenia roles of exercise are often
inseparable in older subjects (Paillard et al., 2005; Bettis et al.,
2018). Hence, it seems appropriated to analyze the effects of

FIGURE 1 | The effects of NMES on the osteogenesis or the reduction of bone loss related to advancing age might be explained by the induction of mechanical and

humoral factors linked to electro-induced contractions. The figure above illustrates the application of electrical stimulation through surface electrodes that generates

muscle contractions. This muscle action can be characterized by tractions of tendons on the bone extremities. These tractions engender a mechanical stress along

the bone diaphysis on the opposite side to the location of the muscle in relation to the axis of the bone (represented by small right arrows on the figure toward the

bone diaphysis). The zone of mechanical stress on the bone diaphysis matches mechanical factors stimulating osteoblasts. It is known that the higher the intensity of

the current, the stronger the muscle contraction. It turns out that the stronger the muscle contraction, the greater the mechanical stress on the bone where the muscle

is inserted. The ostegenesis would be directly proportional to the value of the mechanical stress induced. Therefore, the osteogenesis could be at least partially related

to the intensity of the current. This figure also illustrates the fact that the NMES induces acute physiological adaptations including secretions of local growth factors

(represented by small broken arrows on the figure into the muscle toward the bone diaphysis). These whole stimuli regularly generated through the chronic application

of NMES would be currently considered as positive on the BMD.

regular NMES sessions (NMES training) on BMD (especially
as regards the lower limb) in healthy older subjects to provide
current information accompanied with an argued opinion.

It is important to note that the effects of NMES on BMD
were largely studied in animals as well as in human in different
physiopathological contexts such as musculoskeletal injuries,
spinal cord injury, fractured bone (healing bone), and in
situations of microgravity (e.g., Hamanishi et al., 1995; Park and
Silva, 2004; Peng et al., 2005; Shields and Dudley-Javoroski, 2006;
Groah et al., 2010). The effects on BMD were also analyzed as
part of the utilization of the functional electrical stimulation
which helps the completion of voluntary movements in subjects
presenting motor deficiency (Leeds et al., 1990; Dolbow et al.,
2012; Chang et al., 2013). In return, the effects of NMES on the
BMD in healthy older subjects were very rarely tackled.

In fact, the few studies that have dealt with this topic showed
that even if the NMES does not engender as much mechanical
constraints on bone as the dynamic and intense physical activity,
it could be nevertheless beneficial to osteogenesis. In 38 sedentary
osteopenic 70 year-old women who benefited from 3 sessions
every 14 days for 1 year of whole-body NMES, Von Stengel
et al. (2015) reported a borderline significant effect (p = 0.051)
for the lumbar spine BMD but not for the femoral neck
site (absorptiometry measures) in comparison with 38 control
subjects. After 4 sessions a week of NMES on quadriceps femoris
for 6 weeks in 62 to 75 year-old women, Paillard et al. (2003)
however observed no enhancement of BMD at the level of
different body regions (e.g., total body, femoral, lumbar, legs).
By contrast, in this study, when the NMES was superimposed
onto voluntary muscular contractions (climbing and coming
down 300 stairs per session) the BMD enhanced more on the
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trochanters and the whole legs thanNMES or voluntarymuscular
contractions carried out alone. The superimposed activity (stair-
climbing and NMES practiced simultaneously) would induce
a more important and/or constant traction on femoral bone
than each activity practiced alone which could explain why it
stimulated the osteogenesis more. In fact, when increases in the
BMD are observed, they are always noticed on the sites having
undergone strong mechanical loads (Gutin and Kasper, 1992).
With functional electrical stimulation, Bélanger et al. (2000) have
already showed that the BMD increased on the specific site where
loading was mainly applied.

Regarding the NMES, the duration of the training programs
should be relatively long to increase the BMD as was previously
reported with voluntary physical activity (Layne and Nelson,
1999; Paillard, 2014). Dolbow et al. (2013) infered that the NMES
may help slow the process of bone loss and increase the bonemass
density after long applications (minimum of 12 months) in aged
spinal cord injury subjects. A long duration would be specifically
recommended for older women since it is particularly difficult
to increase BMD in this population through physical activity
(Blumenthal et al., 1991; Paillard, 2014). However, a shorter
training period of NMES could increase the BMD and/or limit its
reduction related to advancing age when it is superimposed onto
voluntarymuscular contractions (Paillard et al., 2003). The effects
of NMES superimposed onto vonluntary muscular contraction
would indeed deserve to be tested on a longer period (>6 weeks
of training) to confirm or not its relevance on BMD of lower
limbs. Moreover, Von Stengel et al. (2015) specified that in order
to favor BMD through NMES training, it would be advisable
to employ a high frequency and high intensity current. From
this viewpoint, the optimal parameters of the current required
to enhance muscle strength seem to be suitable for improving
BMD (for instance, frequency >50Hz, intensity matching the
maximum tolerance threshold of subjects). Indeed, one can

theoretically suggest that the stronger the muscle contraction, the
greater the mechanical constraint on the bone where the muscle
is inserted. It is known that the greater the bone mechanical
constraint (i.e., heavier load), the higher the BMD after training
periods (Paillard, 2014).

The effects of NMES on the osteogenesis or the reduction
of bone loss related to advancing age might be explained
by the induction of mechanical and humoral factors linked
to electro-induced contractions (Figure 1). It was shown with
animal models and human subjects that mechanical stimuli of
osteoblasts induces the secretion of growth factors including
insulin-like growth factor (IGF), vascular endothelial growth
factor (VGEF), transforming growth factor (TGF)-β, and the
bone morphogenetic protein (BMP) that are considered to be
the principal local regulators of osteogenesis (Papachroni et al.,
2009; Tamaki et al., 2014). Feng et al. (2016) specified the
NMES effectively downregulated myostatin mRNA, upregulated
mechano growth factor (MGF) and IGF-1 mRNA expression
which mitigated cortical bone loss. Physiologically, the acute
application of NMES contributes to increasing local blood flow
and augmenting circulation of the components necessary for
bone formation. NMES sessions regularly repeated could favor
bone formation.

Initially, the effects of NMES on BMD in healthy older subjects
seemed unlikely but the available results in the literature appear
to be positive even if they are not yet formally established
and many of the mechanisms are not yet explained. This topic
deserves to be explored further as part of the prevention of
osteopenia and osteoporosis in healthy older subjects.
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