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ABSTRACT

Kemmler, W, Schliffka, R, Mayhew, JL, and von Stengel, S.

Effects of whole-body electromyostimulation on resting meta-

bolic rate, body composition, and maximum strength in post-

menopausal women: the Training and ElectroStimulation Trial.

J Strength Cond Res 24(7): 1880–1887, 2010—We evaluated

the effect of whole-body electromyostimulation (WB-EMS)

during dynamic exercises over 14 weeks on anthropometric,

physiological, and muscular parameters in postmenopausal

women. Thirty women (64.5 6 5.5 years) with experience in

physical training (.3 years) were randomly assigned either to

a control group (CON, n = 15) that maintained their general

training program (2 3 60 min�wk21 of endurance and dynamic

strength exercise) or to an electromyostimulation group (WB-

EMS, n = 15) that additionally performed a 20-minute WB-EMS

training (2 3 20 min�10 d21). Resting metabolic rate (RMR)

determined from spirometry was selected to indicate muscle

mass. In addition, body circumferences, subcutaneous skinfolds,

strength, power, and dropout and adherence values. Resting

metabolic rate was maintained in WB-EMS (20.1 6 4.8

kcal�h21) and decreased in CON (23.265.2 kcal�h21, p =

0.038); although group differences were not significant (p =

0.095), there was a moderately strong effect size (ES = 0.62).

Sum of skinfolds (28.6%) and waist circumference (22.3%)

significantly decreased in WB-EMS whereas both parameters

(1.4 and 0.1%, respectively) increased in CON (p = 0.001, ES =

1.37 and 1.64, respectively), whereas both parameters in-

creased in CON (1.4 and 0.1%, respectively). Isometric strength

changes of the trunk extensors and leg extensors differed

significantly (p# 0.006) between WB-EMS and CON (9.9% vs.

26.4%, ES = 1.53; 9.6% vs.24.5%, ES = 1.43, respectively). In

summary, adjunct WB-EMS training significantly exceeds the

effect of isolated endurance and resistance type exercise on

fitness and fatness parameters. Further, we conclude that for

elderly subjects unable or unwilling to perform dynamic strength

exercises, electromyostimulation may be a smooth alternative to

maintain lean body mass, strength, and power.

KEY WORDS body composition, exercise, RMR, muscle, aging

INTRODUCTION

T
he change of body composition and the corre-
sponding decline of functional capacity from
maturity to senescence, even in healthy subjects,
are of clinical significance. In the USA each year,

about 10% of the nondisabled adults 75 years and older lose
independence to perform the basic activities of daily living
because of disability (16). After the menopausal transition,
body composition changes considerably in elderly women.
These changes include a clinically relevant increase of body
fat together with a reduction of muscle mass (15,35); both
factors correlate with morbidity and mortality in this age
cohort (9). Parallel to these body composition changes,
strength decreases by 15% per decade after the age of 60 years
(12). However, although exercise studies (1,10,32) have
observed favorable changes of body composition and strength
parameters, because of physical limitations or a simple aversion,
a large number of elderly subjects seem to be either unable or
unwilling to perform (intense) exercise programs (19,25).
In this context, whole-body electromyostimulation (WB-

EMS) may be a smooth alternative to demanding conven-
tional exercise programs (40). Although the favorable effect
of local electromyostimulation on (neuro) muscular param-
eters has been previously determined in athletes (4,5,13,26),
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healthy younger (13,17,18), and elderly subjects (2,27,28,38),
the overall effect of WB-EMS on body composition and
strength in elderly subjects is scarce. Also important, the
feasibility and acceptance of this exercise technology is
unknown in this cohort.
Thus, in this pilot study, we determine the effect of WB-

EMS on body composition, strength parameters, feasibility,
and acceptance in a group of postmenopausal women. Our
hypothesis was thatWB-EMS exercise favorably affects body
composition and strength in this cohort.

METHODS

Experimental Approach to the Problem

We performed a 14-week randomized controlled trial with
postmenopausal women to address our hypothesis. To ensure
that participants adequately perform the WB-EMS exercise
regime, we included only women with a long experience of
resistance training. Further, both subgroups performed the
same basic exercise training described below; however, only
the verum group performed an additional WB-EMS regime
over 14 weeks (March 2008 to July 2008).
Endpoints representing our primary targets ‘‘body com-

position’’ and ‘‘maximum strength’’ were skeletal muscle mass
indirectly assessed by spirometry (resting metabolic rate
[RMR]), body fat assessed by skinfold measurement and
bioimpedance analysis (BIA), abdominal fat determined by
waist circumference, and isometric trunk, and leg strength.
The study design allows us to determine the additional

effect of WB-EMS training on the above-mentioned end-
points in comparison to an isolated endurance and strength
training program.

Subjects

Thirty postmenopausal women
55 years and older, living in
the community of Erlangen-
Nurnberg and pretrained dur-
ing the Erlangen Fitness and
Osteoporosis Study (EFOPS)
(21) or Senior Fitness and Pre-
vention Study (SEFIP) exer-
cise studies (24) for .3 years
were included in the Training
and ElectroStimulation Trial
(TEST). Both studies were tri-
alsthat focused on general fit-
ness with special regard to bone
parameters with a combined
high intensity endurance, resis-
tance, and balance regime with
2 joint sessions and 2 home-
training sessions per week.
Exclusion criteria (accord-

ing to the manufacturer) were
epilepsy, cardiac pacemaker,

grave circulatory disorders, abdomen or groin hernia
tuberculosis, cancer, grave neurologic disturbances, in-
flammable diseases, bleeding tendencies, medication, or
diseases affecting muscle metabolism.
The study was approved by the ethics committee of the

University of Erlangen (Ethik Antrag 3777). All study
participants were informed of the experimental risk and gave
written informed consent.
Figure 1 shows the participant flow during the TEST study.

Subjects were stratified by age and randomly assigned to 2
intervention groups: WB-EMS (n = 15) or control (CG: n =
15). In addition to the endurance and strength training
described below, the WB-EMS group performed WB-EMS
training every 4–5 days (see below), whereas the CG were
asked tomaintain their previous exercise training. Table 1 gives
the initial characteristics of the WB-EMS and control group.

Procedures

Intervention. Basic Exercise Program. The basic exercise
program has been described elsewhere in detail (21–23); thus,
only a brief description is given here. The exercise program
consisted of 2 supervised group sessions (60–65 minutes) and 2
home-training sessions (20–25 minutes) per week. During these
sessions, 20 minutes of aerobic dance (70–85% HRmax) were
followed by multilateral jumps (4 3 15 reps) and either by 40
minutes of functional gymnastics and barbell exercises (3
exercises, 2 sets, 6–12 reps at 70–85% 1 repetition maximum
[1RM]) or dynamic resistance training with strength machines
(12 exercises, 1–3 sets, 6–12 reps at 70–85% 1RM).

Electromyostimulation. In addition to this basic exercise
training, the WB-EMS group performed a guided and
supervised WB-EMS training (miha bodytec, Augsburg,

Figure 1. Flowchart of the ‘‘TEST’’ study.
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Germany, Figure 2) every 4–5 days. TheWB-EMS equipment
enables the simultaneous activation of 10 regions (upper legs,
upper arms, bottom, abdomen, chest, lower back, upper back
including the latissimus dorsi) with different intensities (Figure
2). Participants carried out 2 standardizedWB-EMS programs
during a 20-minute session (Table 2).
Fifteen dynamic exercises for all large muscle groups using

a small range of movement were performed duringWB-EMS
training. Exercises were designed not to cause physical
adaptations in this pretrained cohort. Current intensity of the
WB-EMS was progressively increased during the interven-
tional period.

Compliance with the WB-EMS regime was determined
after 6 and 14 weeks. Participants were asked to appraise the
average intensity of a WB-EMS session and the regional
intensity of the WB-EMS on a rating scale (Ratings of
Perceived Exertion [RPE]) between 1 (very low) and 7 (very
high). Attendance was recorded by training logs managed by
research assistants.

Testing Procedures

Tests were carried out before and after 14 weeks of exercise by
the same researcher and at the same time of the day (61
hour). All assessments were determined in a blinded fashion.

Height was determined with
a stadiometer, and weight was
measured with minimal cloth-
ing on digital scales. Body mass
index was calculated as weight
divided by height squared
(kg�m22). Circumferences were
determined at several locations
including the waist and hip.
Body fat was assessed by
skinfold measurement (Lange,
Cambridge, MA, USA) at
11 anatomical sites (tragus,
mouth, axilla, subscapularis,
abdominal, supraillacus, supra-
patella, biceps brachii, triceps
brachii, and gastrocnemius).
Tests were performed twice;
the mean value of both tests
were included in the analysis.
The coefficient of variation
was ,5.3% for this procedure
(multiple-tester reliability).
Resting metabolic rate was

determined between 7:00 and
9:00 at a constant room tem-
perature of 23� C before and
after the 14-week intervention
using indirect calorimetry after
12 or more hours of fasting.
Participants were instructed not
to participate in heavy physical
activity or exercise 24 hours
before the test and to visit the
laboratory by car or public
transport. Participants rested
in a supine position quietly for
15 minutes before the data
collection and for an additional
15 minutes during which the
data were sampled. Subjects
breathed freely through a face
mask with expired air analyzed

Figure 2. Whole-body electromyostimulation equipment.

TABLE 1. Baseline characteristics of the TEST cohort: EMS vs. CG.*†

Variable WB-EMS (n = 15) CG (n = 15) p

Age (y) 65.6 6 5.6 63.3 6 5.4 n.s.
Height (cm) 160.8 6 5.4 162.2 6 6.6 n.s.
Weight (kg) 70.4 6 12.0 64.9 6 10.9 n.s.
Total body fat (%)‡ 37.9 6 4.8 35.0 6 2.7 §
Age at menopause (y)k 48.9 6 5.2 47.9 6 4.1 n.s.
Energy intake (kJ�d21){ 7,689 6 1,722 7,824 6 1,640 n.s.
Protein intake (g�d21){ 65 6 17 71 6 21 n.s.
Exercise volume (min�wk21)k 179 6 58 147 6 43 n.s.
VO2peak (ml�kg21�min21)# 27.1 6 4.1 26.9 6 4.2 n.s.
Multimorbidity (% per group)** 53.3 46.7 n.s.

*EMS = electromyostimulation; CG = control group; WB-EMS = whole-body-electro-
myostimulation; n.s. = nonsignificant.

†Values are given as mean 6 SD.
‡Skinfolds according to Durnin and Wormserley (11).
§p , 0.05.
kBaseline questionnaire.
{Four-day dietary protocol.
#Spirometry; treadmill test to a voluntary maximum.
**Two and more diseases.
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using an open spirometric system (Oxycon mobile, Con-
shohocken, PA, USA). Coefficient of variation determined in
a recent pilot study was 4.1% for this procedure.
Maximum isometric strength of the trunk and leg extensors

was measured with a Schnell M3 isometric tester using the
test protocol suggested by Tusker (36). The coefficients of
variation were ,4.0% (3.1% for trunk extension to 3.9% for
leg extension) for this procedure.
A detailed questionnaire was used to assess well-being, pain

frequency, and intensity at different skeletal sites, prestudy
exercise levels, normal daily activity levels, diseases, and
medication. The follow-up questionnaires additionally con-
tained sections to monitor disease incidences, changes in
disease severity and intake of medication, life-style changes,
or sport activities outside the TEST training program.

Statistical Analyses

The sample size calculation was based on our main
endpoint RMR. To detect a 5% difference between the
groups, 15 subjects per group were required for a 5% error
probability with 80% statistical power (SD: 5%; Dropout
rate: n = 2). Baseline values were reported as means and
SDs. Normal distribution was checked using the Kolgo-
morov–Smirnov test, and homogeneity of variance was
investigated with Levine’s F-test. Normally distributed
variable differences within groups were analyzed by
paired t-tests, otherwise the Wilcoxon–rank test was
used. Changes between baseline and 18 months follow-up
were reported as absolute changes. Depending on the
data, Mann–Whitney U test based on absolute changes or
analyses of variance with repeated measurements were
performed to check time–group interactions. Between-
group differences were given as absolute difference along
with 95% confidence interval (Table 3). All tests were
2-tailed, and statistical significance was accepted at p #

0.05. Effect sizes (ES) based on the absolute difference
(6SD) between baseline and follow-up in the WB-EMS
vs. the CG were calculated using Cohens’ d (8). SPSS 16.0
(SPSS Inc, Chicago, IL, USA) was used for all statistical
procedures.

RESULTS

Overall attendance rate of the basic exercise program did
not change compared with prestudy attendance and was
comparable between both groups (�80%; 22.3 6 2.0 total
sessions). Attendance rate of the WB-EMS training was 98%.
No incidents of medical significance occurred during the
training sessions.
Average exercise intensity per session was characterized

as moderate to high (RPE: 4.4 6 0.5) after 6 weeks and
increased (4.9 6 0.7) after 14 weeks of WB-EMS exercise.
After 6 weeks, with 1 exception (chest: 3.4), regional EMS in-
tensity was described as moderate for all other regions (3.96
0.3, 3.7–4.1). The perceived exposure significantly increased
after 14 weeks of WB-EMS training (4.7 6 0.5; 4.2–5.4).

The effect of the WB-EMS program on primary and
secondary study endpoints is given in Table 3. In summary,
RMR significantly decreased in the CG (25.3%, p = 0.038)
and did not show relevant changes in the electromyo-
stimulation group (20.2%, p = 0.991). Despite a moderate
ES (ES = 0.62), no significant differences (p = 0.095) between
the groups were determined.
Body weight significantly decreased in both groups

(WB-EMS: 1.9 6 1.7 kg, p = 0.001 vs. CG: 0.9 6 1.5 kg,
p = 0.025); however, changes in body weight over the
training was not significantly different between WB-EMS
and CG (p = 0.122, ES = 0.62) after 14 weeks.
Sums of skinfolds were significantly reduced in the

WB-EMS (p = 0.001) by 8.6%. A nonsignificant increase of
this parameter was observed in the CG (1.4%), whereas
difference between groups was significant (p = 0.001; ES =
1.37). Corresponding data were obtained for BIA measure-
ment (p = 0.001; ES = 1.22).
Waist and hip circumferences were also significantly (p =

0.001) reduced in the WB-EMS, both by �2.3%. In the CG,
waist circumference increased nonsignificantly (p = 0.106) by
1.0%, whereas hip circumference significantly (p = 0.008)
decreased by 1.3%. Significant between-group differences
were determined for waist circumference (p = 0.001,
ES = 1.64).
Maximum isometric strength of the trunk and leg extensors

of the WB-EMS group significantly improved by 9.9% (p =
0.015) and 9.6% (p = 0.001), respectively. Both parameters
decreased nonsignificantly in the CG (trunk extensors:
26.4%, p = 0.054; leg extensors: 24.5; p = 0.106). Whole-
body electromyostimulation and CG significantly (p , 0.01)
differed on these parameters after 14 weeks (ES = 1.53 and
1.43, respectively).
Because we observed a low incidence of pain intensity and

frequency at baseline, the lack of significant differences among
WB-EMS and CG for these parameters were not unexpected
after 14 weeks of intervention.

TABLE 2. Whole-body electromyostimulation-
protocol of the TEST study.

Program 1 Program 2

Stimulation frequency:
85 Hz

Frequency: 7 Hz

Impulse duration: 4 s Impulse duration:
continuously

Impulse break: 4 s
Impulse increase: 0 s
Pulse breadth: 350 ms Pulse breadth: 350 ms
Impulse type: bipolar Impulse type: bipolar
Duration: 10 min Duration: 10 min
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DISCUSSION

To the best of our knowledge, the present study is the
first clinical trial that determined the feasibility and, with
1 limitation the effectiveness of WB-EMS on body com-
position and strength in a postmenopausal cohort. Thus, we
could verify our hypothesis up to the point that WB-EMS
has a significantly positive impact on overall and abdominal
fat and on strength parameters. However, lean body mass
(LBM) indirectly determined via RMR showed a nonsignif-
icant effect (p = 0.095; ES: 0.62) after adjuvant WB-EMS.
Compared with other studies with comparable duration

(3), dropout rate was low, and attendance was excellent in the
WB-EMS group. However, one has to realize that our WB-
EMS program was related to rather individualized training
sessions with 1 instructor and 2 participants. Thus, it may be
rather the exclusiveness of the exercise program than its
mode that leads to this exceptional high commitment.
Judging the overall effectiveness of WB-EMS in this cohort

of pretrained and physically adapted subjects is difficult. The
focus of this study was to determine the effect of an adjuvant
WB-EMS program on a variety of body composition and
strength parameters in a pilot study design. This may have

limited us in several ways. First, we recruited a cohort of
pretrained women that were capable of realizing the
prescribed perceived exertion rate for theWB-EMS program.
This proceeding may be suboptimum concerning the
development of our endpoints; however, comparable to
conventional exercise protocols, it was essential that exercise
intensity (i.e., current intensity) was high enough to over-
whelm individuals’ strain threshold. Secondly, exercise and
control groups maintained their conventional exercise
training to not disrupt the training continuity, especially of
the control group. Although both groups performed the same
basic exercise protocol with identical attendance, there may
be a synergistic effect that favored the results of theWB-EMS
group. Thirdly, we did not perform high-end body compo-
sition measurements (i.e., computed tomography [CT] or
dual energy X-ray absorptiometry [DXA]) to minimize the
bureaucratic expenditure. Hence, greater changes in body
composition might have occurred than were able to be
determined by the precision of our measurements.
Despite the aforementioned limitations, after 14 weeks of

intervention, we determined positive WB-EMS effects on all
anthropometrical and muscular endpoints. Although we did

TABLE 3. Changes of primary and secondary endpoints in the WB-EMS and control group.*†‡

EMS (n = 15)
(MV 6 SD)

CG (n = 15)
(MV 6 SD)

Absolute difference mean
(95% CI) p

Effect
size

RMR (kcal�h21)
Baseline 61.6 6 10.6 60.0 6 9.7
14 wk 61.6 6 9.5 56.8 6 9.2
Difference 20.1 6 4.8 23.2 6 5.2 23.2 (27.0 to 0.6) 0.095 0.62

Sum of 11 skinfold (mm)
Baseline 267.8 6 68.8 227.4 6 30.3
14 wk 244.6 6 54.6 230.2 6 32.1
Difference 223.2 6 20.1 2.8 6 17.7 26.1 (11.9–40.2) 0.001 21.37

Waist circumference (cm)
Baseline 86.5 6 10.9 80.8 6 7.1
14 wk 84.4 6 54.6 81.6 6 6.6
Difference 22.0 6 1.5 0.8 6 1.9 2.8 (1.6–4.1) 0.001 21.64

Hip circumference (cm)
Baseline 106.3 6 10.2 101.0 6 6.6
14 wk 103.6 6 9.5 99.7 6 6.2
Difference 22.5 6 1.8 21.3 6 1.6 1.2 (20.1 to 2.5) 0.065 20.70

Isometric maximum strength trunk–extensors (N)
Baseline 116.3 6 23.8 119.5 6 40.0
14 wk 127.8 6 44.2 112.0 6 32.2
Difference 11.5 6 12.8 27.6 6 12.2 219.2 (232.4 to 26.0) 0.006 1.53

Isometric maximum strength leg extensors (N)
Baseline 827 6 209 889 6 191
14 wk 908 6 229 849 6 214
Difference 80 6 77 240 6 90 2121 (2184 to 257) 0.001 1.43

*WB-EMS = whole-body electromyostimulation; RMR = resting metabolic rate.
†Significance (p) is listed for between-group differences only; further information is given in the corresponding Result section.
‡n.s. = nonsignificant.

1884 Journal of Strength and Conditioning Research
the TM

Electromyostimulation with Elderly



not establish a sedentary control group for reasons discussed
above, differences between groups reached statistical signifi-
cance for fitness (strength parameters) and total and abdominal
fatness (sums of skinfolds and waist circumference) parameters.
Concerning our primary endpoint, however, theWB-EMS

effect on RMR did not reach statistical significance. Resting
metabolic rate was selected as our primary endpoint for
2 reasons. Primarily, from a methodological point of view,
RMR represents a key determinant of the magnitude of
fat-free mass (FFM) (33). Thus, changes of RMR may
indicate changes of FFM. Although FFM is a heterogenic
compartment (muscle, organs, bone, and connective tissue),
exercise-induced changes of FFM can be almost exclusively
dedicated to changes of muscle mass.
Further, with 60–70% of the subjects, RMR is the largest

component of daily energy expenditure (34), meaning that
exercise strategies to decrease or maintain body weight or
body fat should focus on FFM. Thus, although compared
with DXA, Magnetic resonance imaging, or quantitative
computed tomography (QCT), RMR may be a suboptimum
parameter to determine muscle mass per se; RMR
assessment additionally gives an insight into basic energy
consumption of these postmenopausal women.
A central cause for the failure of the study to determine

a significant effect on RMR may have been a less than adequate
statistical power, resulting in a higher deviation of the mean
difference than expected (8% vs. 5%). Several reasons may
contribute to this higher variance. (a)A low reliability of theRMR
assessment may have been present. This factor, however, can be
neglected because the CV of our RMR measurement was
comparable with corresponding studies (37). (b) Changes of
confounding factors with impact on RMR during the in-
tervention periodwere determined by interview or questionnaire;
however, no subject reported major corresponding changes. (c)
Also, all subjects followed the prescribed protocol, which meant
no subject participated in heavy physical activity or exercise 24
hours before the test or visited the laboratory by other means
than car or public transport such as bicycling or walking.
Thus, the most likely reason for the high intraindividual

variation of the adaptability to WB-EMS (25.3 to 8.4%) may
be either the exercise compliance in the WB-EMS group or
a high variation of the corresponding effect of WB-EMS on
RMR in pretrained postmenopausal women (31). Concern-
ing the first issue, although attendance was rather high in
the WB-EMS group, it was difficult to decide whether
subjects realized the prescribed exercise intensity during the
WB-EMS training.
Regarding the development of RMR, it is interesting that

the WB-EMS group maintained their rates, whereas RMR of
the CG significantly dropped. Although a systematic error
concerning the spirometric assessment may be a reason, the
quality control parameters of this procedure did not support
this idea. A more evident reason for the change of RMR may
be individuals acclimatization induced by seasonal variations
during the test and intervention phase fromMarch to July (7).

Both groups reduced their body weight significantly, with
only one subject per group listing an energy restricting diet as
a reason. Comparable to the RMR, the reduction of body
weight may be related to seasonal changes of nutritional
habits and energy intake (39). Whether energy restriction was
generally related to changes of RMR and body weight is
difficult to conclude. In their review, Stiegler and Cunliffe (34)
summarized the effect of energy restriction and combined
exercise training (endurance and strength type, comparable
to our basic exercise program). Dependent on protein intake,
the authors determined that there was at least maintenance
of the FFM. After progressive, high-intensity resistance
training combined with an energy-restricted diet (800
kcal�d21 with 40% proteins) in a cohort of overweighted
subjects, Bryner et al. (6) determined a significant reduction
of body weight (15%) combined with a marginal decrease of
the FFM (21.6%) and a significant increment of the RMR
(3.6%). In parallel, the low-moderate reduction of body
weight in our nonsedentary CG should not result in a
significant decrease of the RMR.
Besides the significant reduction of body weight in the

WB-EMS group, a significant decrease of subcutaneous body
fat as assessed at 11 skinfold sites along with a significant
reduction of the abdominal body fat as determined by waist
circumference assessment (20,30) was shown in the presence
of maintenance of RMR.
Reviewing the literature, there is a lack of studies deter-

mining the effect of whole-body myostimulation on body
composition in the elderly. Although some studies demon-
strated an increase in muscle mass after myostimulation
(27,38), no study has yet assessed the effect on total or central
body fat.
Concerning maximum strength changes, our WB-EMS

group that performed an endurance and strength type basic
program together with a WB-EMS program exhibited
significant differences compared with a CG that performed
an isolated strength and endurance exercise program. Most
studies with untrained subjects confirmed our results
(13,28,38). In one study, the isolated effect of local EMS
on isokinetic quadriceps strength was compared with an
isolated EMS program and a combined stair climbing and
EMS program (28). Contrarily to our results, Paillard et al.
(28) did not obtain significant differences concerning the
strength changes between the groups. However, unlike our
cohort, their exercise subjects were college ‘‘freshmen’’
producing a consider age differential.
One may argue that the difference between the isolated

basic exercise group (CG) and the combined exercise and
WB-EMS group did result from a higher training volume of
the WB-EMS group. However, this argument may be con-
founded by dose-effect phenomenon in studies of strength
type exercise (14,29).
In summary, in this group of pretrained elderly subjects,

a high acceptance and feasibility of whole-body EMS training
exercise was verified. Further, we provided evidence that
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adjuvant WB-EMS exercise exceeds the effect of isolated
strength and endurance type exercise for fitness and fatness
parameters.

PRACTICAL APPLICATIONS

It is obvious that an increasing number of elderly subjects are
unable or unwilling to perform (intense) conventional exercise
training regimes. The findings of the study demonstrate that
whole-body EMS program performed for 20 minutes every 4
days is effective and feasible. Thus, we consider the application
of this novel exercise technology an appropriate alternative for
elderly subjects to favorably improve body composition and
physical strength important for healthy and independent aging.
As a result, WB-EMS as a means of exercise training that
focuses on body composition and strength parameters should
be taken seriously into account by end users, physical therapists,
and physical fitness instructors.
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